Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Toxicol Ind Health ; 40(5): 272-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523547

RESUMO

Perchloroethylene (PCE) is used as a solvent and chemical intermediate. Following chronic inhalation exposure, PCE selectively induced liver tumors in mice. Understanding the mode of action (MOA) for PCE carcinogenesis in mice is important in defining its possible human cancer risk. The proposed MOA is based on the extensive examination of the peer-reviewed studies that have assessed the mouse liver effects of PCE and its major oxidative metabolite trichloroacetic acid (TCA). Similar to PCE, TCA has also been demonstrated to liver tumors selectively in mice following chronic exposure. The Key Events (KE) of the proposed PCE MOA involve oxidative metabolism of PCE to TCA [KE 1]; activation of the peroxisome proliferator-activated receptor alpha (PPARα) [KE 2]; alteration in hepatic gene expression including cell growth pathways [KE 3]; increase in cell proliferation [KE 4]; selective clonal expansion of hepatic preneoplastic foci [KE 5]; and formation of hepatic neoplasms [KE 6]. The scientific evidence supporting the PPARα MOA for PCE is strong and satisfies the requirements for a MOA analysis. The PPARα liver tumor MOA in rodents has been demonstrated not to occur in humans; thus, human liver cancer risk to PCE is not likely.


Assuntos
Neoplasias Hepáticas , Tetracloroetileno , Camundongos , Humanos , Animais , Tetracloroetileno/toxicidade , Tetracloroetileno/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Neoplasias Hepáticas/induzido quimicamente , Fígado , Oxirredução , Medição de Risco
2.
BMC Public Health ; 23(1): 2561, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129859

RESUMO

BACKGROUND: The laundry and dry cleaning industries are critical for maintaining cleanliness and hygiene in our daily lives. However, they have also been identified as sources of hazardous chemical exposure for workers, leading to potentially severe health implications. Despite mounting evidence that solvents like perchloroethylene and trichloroethylene are carcinogenic, they remain commonly used in the industry. Additionally, while alternative solvents are increasingly being utilized in response to indications of adverse health and environmental effects, there remains a significant gap in our understanding of the potential risks associated with exposure to these new agents. METHODS: This study aims to identify gaps in the literature concerning worker exposure to contemporary toxic chemicals in the laundry and dry cleaning industry and their associated carcinogenic risks. A scoping review of peer-reviewed publications from 2012 to 2022 was conducted to achieve this objective, focusing on studies that detailed chemical exposures, sampling methods, and workers within the laundry and dry cleaning sector. RESULTS: In this scoping review, 12 relevant papers were assessed. A majority (66%) examined perchloroethylene exposure, with one notable finding revealing that biomarkers from dry cleaners had significant micronuclei frequency and DNA damage, even when exposed to PCE at levels below occupational exposure limits. Similarly, another study supported these results, finding an increase in early DNA damage among exposed workers. Separate studies on TCE and benzene presented varied exposure levels and health risks, raising concern due to their IARC Group 1 carcinogen classification. Information on alternative solvents was limited, highlighting gaps in health outcome data, exposure guidelines, and carcinogenic classifications. CONCLUSION: Research on health outcomes, specifically carcinogenicity from solvent exposure in dry cleaning, is limited, with 66% of studies not monitoring health implications, particularly for emerging solvents. Further, findings indicated potential DNA damage from perchloroethylene, even below set occupational limits, emphasizing the need to reevaluate safety limits. As alternative solvents like butylal and high-flashpoint hydrocarbons become more prevalent, investigations into the effects of their exposure are necessary to safeguard workers' health. This scoping review is registered with the Open Science Framework, registration DOI: https://doi.org/10.17605/OSF.IO/Q8FR3 .


Assuntos
Neoplasias , Exposição Ocupacional , Tetracloroetileno , Tricloroetileno , Humanos , Tetracloroetileno/toxicidade , Tetracloroetileno/análise , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Solventes/toxicidade , Hidrocarbonetos , Tricloroetileno/toxicidade , Neoplasias/induzido quimicamente
3.
Environ Health Perspect ; 130(11): 117009, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36445294

RESUMO

BACKGROUND: Both trichloroethylene (TCE) and tetrachloroethylene (PCE) are high-priority chemicals subject to numerous human health risk evaluations by a range of agencies. Metabolism of TCE and PCE determines their ultimate toxicity; important uncertainties exist in quantitative characterization of metabolism to genotoxic moieties through glutathione (GSH) conjugation and species differences therein. OBJECTIVES: This study aimed to address these uncertainties using novel in vitro liver models, interspecies comparison, and a sensitive assay for quantification of GSH conjugates of TCE and PCE, S-(1,2-dichlorovinyl)glutathione (DCVG) and S-(1,2,2-trichlorovinyl) glutathione (TCVG), respectively. METHODS: Liver in vitro models used herein were suspension, 2-D culture, and micropatterned coculture (MPCC) with primary human, rat, and mouse hepatocytes, as well as human induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep). RESULTS: We found that, although efficiency of metabolism varied among models, consistent with known differences in their metabolic capacity, formation rates of DCVG and TCVG generally followed the patterns human≥rat≥mouse, and primary hepatocytes>iHep. Data derived from MPCC were most consistent with estimates from physiologically based pharmacokinetic models calibrated to in vivo data. DISCUSSION: For TCE, the new data provided additional empirical support for inclusion of GSH conjugation-mediated kidney effects as critical for the derivation of noncancer toxicity values. For PCE, the data reduced previous uncertainties regarding the extent of TCVG formation in humans; this information was used to update several candidate kidney-specific noncancer toxicity values. Overall, MPCC-derived data provided physiologically relevant estimates of GSH-mediated metabolism of TCE and PCE to reduce uncertainties in interspecies extrapolation that constrained previous risk evaluations, thereby increasing the precision of risk characterizations of these high-priority toxicants. https://doi.org/10.1289/EHP12006.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tetracloroetileno , Tricloroetileno , Humanos , Ratos , Camundongos , Animais , Tricloroetileno/toxicidade , Tetracloroetileno/toxicidade , Glutationa , Fígado
4.
J Med Case Rep ; 16(1): 388, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36284328

RESUMO

BACKGROUND: Perchloroethylene is a colorless, strong-smelling substance commonly used for dry cleaning. Liver and kidney toxicities and carcinogenicity are well-known occupational hazards caused by chronic perchloroethylene exposure. Acute intoxication by ingestion of nondiluted perchloroethylene is rare in the adult population owing to its strong smell and taste. Very few data are available to physicians managing patients in this situation. CASE PRESENTATION: An 89-year-old Caucasian woman accidentally drank perchloroethylene while visiting her laundry, leading to a coma within a few minutes. The poison control center provided little information about perchloroethylene toxicity after ingestion, including an estimated long biological half-life (144 hour) and detrimental effects to liver and kidneys. A long intensive care unit stay was thus expected, potentially leading to several complications. After intubation, transitory hypoxemia appeared and rapidly resolved, while mild hemodynamic instability was managed with fluid resuscitation and anti-arrhythmic drugs. Twelve hours after perchloroethylene ingestion, the patient suddenly woke up and self-extubated. Less than 24 hours after ingestion, she was discharged from the intensive care unit, and 4 days later she was discharged home. CONCLUSION: The patient drank perchloroethylene from a bottle, which prevented her from smelling it, and owing to its taste, only a small sip was likely drunk. However, a much larger intake was presumed, given her rapid and profound central nervous system depression. This case was challenging owing to the paucity of information available regarding acute perchloroethylene ingestion and the duration and magnitude of its effect. The present report will hopefully be of support for clinicians managing patients with this rare acute intoxication.


Assuntos
Tetracloroetileno , Adulto , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Tetracloroetileno/toxicidade , Antiarrítmicos , Doença Aguda , Fígado
5.
Reprod Toxicol ; 109: 109-120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35304307

RESUMO

Residential and occupational exposures to the industrial solvents perchloroethylene (PERC) and trichloroethylene (TCE) present public health concerns. In humans, maternal PERC and TCE exposures can be associated with adverse birth outcomes. Because PERC and TCE are biotransformed to toxic metabolites and placental dysfunction can contribute to adverse birth outcomes, the present study compared the toxicity of key PERC and TCE metabolites in three in vitro human placenta models. We measured cell viability and caspase 3 + 7 activity in the HTR-8/SVneo and BeWo cell lines, and caspase 3 + 7 activity in first trimester villous explant cultures. Cultures were exposed for 24 h to 5-100 µM S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), or 5-200 µM trichloroacetate (TCA) and dichloroacetate (DCA). DCVC significantly reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells at a lower concentration (20 µM) compared with concentrations toxic to BeWo cells and villous explants. Similarly, TCVC reduced cell viability and increased caspase 3 + 7 activity in HTR-8/SVneo cells but not in BeWo cells. TCA and DCA had only negligible effects on HTR-8/SVneo or BeWo cells. This study advances understanding of potential risks of PERC and TCE exposure during pregnancy by identifying metabolites toxic in placental cells and tissues.


Assuntos
Tetracloroetileno , Tricloroetileno , Cisteína/metabolismo , Feminino , Humanos , Placenta/metabolismo , Gravidez , Solventes , Tetracloroetileno/metabolismo , Tetracloroetileno/toxicidade , Tricloroetileno/toxicidade
6.
J Biochem Mol Toxicol ; 36(4): e23000, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35156261

RESUMO

Evaluation of the compounds and metabolites, and studying their side effects in the workplace is essential. This study was designed to evaluate the exposure of dry  cleaning workers to perchloroethylene (PEC), and its liver and kidney damage, and oxidative stress in B-lymphocytes isolated from the workers. Blood samples were evaluated for liver (alanine transaminase [ALT] and aspartate transaminase [AST]) and kidney (BUN and creatinine) markers. For measurement of PEC, exhaled, personal, and ambient air samples were collected and analyzed gas chromatography (GC-FID) through the NIOSH 1003 and 3704 methods. Also, the parameters of oxidative stress including the level of reactive oxygen species (ROS), glutathione (GSH), oxidized glutathione (GSSG), and lipid peroxidation (LPO) in B-lymphocytes were evaluated. The results showed that the levels of liver enzymes ALT and AST in dry cleaning workers are higher than in the control group. The personal exposure levels and exhaled air concentration of PEC in dry cleaning workers were above the recommended national occupational exposure limits (OELs) and the biological exposure index (BEI). The levels of ROS, LPO, and GSSG in B-lymphocytes from the dry cleaning workers are higher than the control group, and the levels of GSH in dry cleaning workers are lower. The results suggested that exposure of dry cleaning workers to PEC could be associated with liver damage and oxidative damage in B-lymphocytes.


Assuntos
Poluentes Ocupacionais do Ar , Lavanderia , Tetracloroetileno , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Monitoramento Ambiental/métodos , Dissulfeto de Glutationa/análise , Humanos , Lavanderia/métodos , Linfócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Tetracloroetileno/análise , Tetracloroetileno/toxicidade
7.
Toxicol Sci ; 182(2): 168-182, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33988684

RESUMO

Quantification of interindividual variability is a continuing challenge in risk assessment, particularly for compounds with complex metabolism and multi-organ toxicity. Toxicokinetic variability for perchloroethylene (perc) was previously characterized across 3 mouse strains and in 1 mouse strain with various degrees of liver steatosis. To further characterize the role of genetic variability in toxicokinetics of perc, we applied Bayesian population physiologically based pharmacokinetic (PBPK) modeling to the data on perc and metabolites in blood/plasma and tissues of male mice from 45 inbred strains from the Collaborative Cross (CC) mouse population. After identifying the most influential PBPK parameters based on global sensitivity analysis, we fit the model with a hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation. We found that the data from 3 commonly used strains were not representative of the full range of variability in perc and metabolite blood/plasma and tissue concentrations across the CC population. Using interstrain variability as a surrogate for human interindividual variability, we calculated dose-dependent, chemical-, and tissue-specific toxicokinetic variability factors (TKVFs) as candidate science-based replacements for the default uncertainty factor for human toxicokinetic variability of 100.5. We found that toxicokinetic variability factors for glutathione conjugation metabolites of perc showed the greatest variability, often exceeding the default, whereas those for oxidative metabolites and perc itself were generally less than the default. Overall, we demonstrate how a combination of a population-based mouse model such as the CC with Bayesian population PBPK modeling can reduce uncertainty in human toxicokinetic variability and increase accuracy and precision in quantitative risk assessment.


Assuntos
Tetracloroetileno , Animais , Teorema de Bayes , Humanos , Masculino , Camundongos , Modelos Biológicos , Método de Monte Carlo , Oxirredução , Tetracloroetileno/toxicidade , Toxicocinética
8.
Environ Sci Pollut Res Int ; 28(29): 39576-39586, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33763835

RESUMO

Perchloroethylene (PCE), also known as tetrachloroethylene, is a commercially important chlorinated solvent commonly used in dry cleaning, textile processing, and metal degreasing industries. According to the available studies, the potential genotoxic impacts of this chlorinated solvent on human beings are still controversial. The present work was carried out to determine the genotoxic effects of PCE on human peripheral blood lymphocytes (PBLs) using chromosome aberrations (CAs) and cytokinesis-block micronucleus (CBMN) tests. Additionally, the antigenotoxic potential of α-tocopherol (α-Toc), a well-known antioxidant agent, on human lymphocytes treated with PCE in vitro was assessed. The cells were exposed for 48 h to PCE (25, 50, 100, and 150 µg/mL) alone as well as in combination with α-Toc (100 µg/mL). The findings of the study suggested that, relative to solvent control, PCE significantly increased the structural CA and MN formation for all concentrations. However, simultaneous treatment of PCE and α-Toc caused a significant reduction of CAs and MNi as compared to cultures treated with PCE alone. Besides, the results showed that PCE has cytotoxic effects on human PBLs as indicated by the significant decrease in mitotic index (MI) and nuclear division index (NDI). Nevertheless, the co-treatment of α-Toc with PCE did not reduce the cytotoxicity of PCE at a significant level. In conclusion, it can be suggested that PCE is genotoxic and cytotoxic in human PBLs, and α-Toc has an antigenotoxic effect on PCE-induced genotoxicity but has no significant effect on the cytotoxicity triggered by PCE.


Assuntos
Tetracloroetileno , Células Cultivadas , Aberrações Cromossômicas , Dano ao DNA , Humanos , Linfócitos , Testes para Micronúcleos , Mutagênicos/toxicidade , Tetracloroetileno/toxicidade , alfa-Tocoferol/farmacologia
9.
Toxicol Appl Pharmacol ; 400: 115069, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32445755

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD), a major cause of chronic liver disease in the Western countries with increasing prevalence worldwide, may substantially affect chemical toxicokinetics and thereby modulate chemical toxicity. OBJECTIVES: This study aims to use physiologically-based pharmacokinetic (PBPK) modeling to characterize the impact of NAFLD on toxicokinetics of perchloroethylene (perc). METHODS: Quantitative measures of physiological and biochemical changes associated with the presence of NAFLD induced by high-fat or methionine/choline-deficient diets in C57B1/6 J mice are incorporated into a previously developed PBPK model for perc and its oxidative and conjugative metabolites. Impacts on liver fat and volume, as well as blood:air and liver:air partition coefficients, are incorporated into the model. Hierarchical Bayesian population analysis using Markov chain Monte Carlo simulation is conducted to characterize uncertainty, as well as disease-induced variability in toxicokinetics. RESULTS: NAFLD has a major effect on toxicokinetics of perc, with greater oxidative and lower conjugative metabolism as compared to healthy mice. The NAFLD-updated PBPK model accurately predicts in vivo metabolism of perc through oxidative and conjugative pathways in all tissues across disease states and strains, but underestimated parent compound concentrations in blood and liver of NAFLD mice. CONCLUSIONS: We demonstrate the application of PBPK modeling to predict the effects of pre-existing disease conditions as a variability factor in perc metabolism. These results suggest that non-genetic factors such as diet and pre-existing disease can be as influential as genetic factors in altering toxicokinetics of perc, and thus are likely contribute substantially to population variation in its adverse effects.


Assuntos
Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tetracloroetileno/toxicidade , Animais , Teorema de Bayes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Tetracloroetileno/sangue , Tetracloroetileno/farmacocinética , Toxicocinética
10.
Am J Case Rep ; 20: 1220-1224, 2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31422416

RESUMO

BACKGROUND Aspergillus spores have the ability to affect patients with or without intact immune systems; because of this disease's wide patient involvement it deserves a place on the differential diagnosis list, with endocarditis and tuberculosis, for those presenting with new pulmonary nodules or cavitation. CASE REPORT This case report involves the presentation, diagnosis, and treatment of a 69-year-old female who presented with new rapidly progressing cavitary lung lesions in the setting of copious administration of systemic steroid use. Given the patient's past history of alcoholism and environmental exposure, her case was not straight forward in regard to a diagnosis. Ultimately, she was diagnosed with chronic cavity pulmonary aspergillosis in the setting of chronic immunosuppression secondary to systemic steroid administration. Due to her convoluted medical history and the poor differential diagnosis list, there was a delay in final diagnosis. CONCLUSIONS This case report and clinical review aims to prevent anchoring when the patient's presentation is not straight forward and aims to remind the clinician of the importance of a differential diagnosis.


Assuntos
Doença Crônica , Aspergilose Pulmonar/diagnóstico , Idoso , Alcoolismo/complicações , Aspergillus fumigatus/isolamento & purificação , Carcinógenos/toxicidade , Diagnóstico Tardio , Diagnóstico Diferencial , Feminino , Glucocorticoides/uso terapêutico , Humanos , Pulmão/diagnóstico por imagem , Exposição Ocupacional/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Tetracloroetileno/toxicidade , Tomografia Computadorizada por Raios X
11.
Environ Health Perspect ; 127(6): 67011, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246107

RESUMO

BACKGROUND: Interindividual variability in susceptibility remains poorly characterized for environmental chemicals such as tetrachloroethylene (PERC). Development of population-based experimental models provide a potential approach to fill this critical need in human health risk assessment. OBJECTIVES: In this study, we aimed to better characterize the contribution of glutathione (GSH) conjugation to kidney toxicity of PERC and the degree of associated interindividual toxicokinetic (TK) and toxicodynamic (TD) variability by using the Collaborative Cross (CC) mouse population. METHODS: Male mice from 45 strains were intragastrically dosed with PERC ([Formula: see text]) or vehicle (5% Alkamuls EL-620 in saline), and time-course samples were collected for up to 24 h. Population variability in TK of S-(1,2,2-trichlorovinyl)GSH (TCVG), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC), and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) was quantified in serum, liver, and kidney, and analyzed using a toxicokinetic model. Effects of PERC on kidney weight, fatty acid metabolism-associated genes [ Acot1 (Acyl-CoA thioesterase 1), Fabp1 (fatty acid-binding protein 1), and Ehhadh (enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase)], and a marker of proximal tubular injury [KIM-1 (kidney injury molecule-1)/Hepatitis A virus cellular receptor 1 ( Havcr1)] were evaluated. Finally, quantitative data on interstrain variability in both formation of GSH conjugation metabolites of PERC and its kidney effects was used to calculate adjustment factors for the interindividual variability in both TK and TD. RESULTS: Mice treated with PERC had significantly lower kidney weight, higher kidney-to-body weight (BW) ratio, and higher expression of fatty acid metabolism-associated genes ( Acot1, Fabp1, and Ehhadh) and a marker of proximal tubular injury (KIM-1/ Havcr1). Liver levels of TCVG were significantly correlated with KIM-1/ Havcr1 in kidney, consistent with kidney injury being associated with GSH conjugation. We found that the default uncertainty factor for human variability may be marginally adequate to protect 95%, but not more, of the population for kidney toxicity mediated by PERC. DISCUSSION: Overall, this study demonstrates the utility of the CC mouse population in characterizing metabolism-toxicity interactions and quantifying interindividual variability. Further refinement of the characterization of interindividual variability can be accomplished by incorporating these data into in silico population models both for TK (such as a physiologically based pharmacokinetic model), as well as for toxicodynamic responses. https://doi.org/10.1289/EHP5105.


Assuntos
Nefropatias/induzido quimicamente , Tetracloroetileno/farmacocinética , Tetracloroetileno/toxicidade , Animais , Camundongos de Cruzamento Colaborativo , Glutationa/análogos & derivados , Glutationa/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Rim/efeitos dos fármacos , Nefropatias/metabolismo , Fígado/efeitos dos fármacos , Masculino , Medição de Risco/métodos , Especificidade da Espécie , Tetracloroetileno/metabolismo , Toxicocinética
12.
Biom J ; 61(1): 101-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30633390

RESUMO

In many applications where it is necessary to test multiple hypotheses simultaneously, the data encountered are discrete. In such cases, it is important for multiplicity adjustment to take into account the discreteness of the distributions of the p-values, to assure that the procedure is not overly conservative. In this paper, we review some known multiple testing procedures for discrete data that control the familywise error rate, the probability of making any false rejection. Taking advantage of the fact that the exact permutation or exact pairwise permutation distributions of the p-values can often be determined when the sample size is small, we investigate procedures that incorporate the dependence structure through the exact permutation distribution and propose two new procedures that incorporate the exact pairwise permutation distributions. A step-up procedure is also proposed that accounts for the discreteness of the data. The performance of the proposed procedures is investigated through simulation studies and two applications. The results show that by incorporating both discreteness and dependency of p-value distributions, gains in power can be achieved.


Assuntos
Biometria/métodos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Modelos Estatísticos , Neurotoxinas/toxicidade , Projetos de Pesquisa , Tetracloroetileno/toxicidade
13.
Toxicol Sci ; 167(1): 126-137, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30202895

RESUMO

Accounting for genetic and other (eg, underlying disease states) factors that may lead to inter-individual variability in susceptibility to xenobiotic-induced injury is a challenge in human health assessments. A previous study demonstrated that nonalcoholic fatty liver disease (NAFLD), one of the common underlying disease states, enhances tetrachloroethylene (PERC)-associated hepatotoxicity in mice. Interestingly, NAFLD resulted in a decrease in metabolism of PERC to nephrotoxic glutathione conjugates; we therefore hypothesized that NAFLD would protect against PERC-associated nephrotoxicity. Male C57BL/6J mice were fed a low-fat (LFD), high-fat (31% fat, HFD), or high-fat methionine/choline/folate-deficient (31% fat, MCD) diets. After 8 weeks mice were administered either a single dose of PERC (300 mg/kg i.g.) and euthanized at 1-36 h post dose, or five daily doses of PERC (300 mg/kg/d i.g.) and euthanized 4 h after last dose. Relative to LFD-fed mice, HFD- or MCD-fed mice exhibited decreased PERC concentrations and increased trichloroacetate (TCA) in kidneys. S-(1,2,2-trichlorovinyl)glutathione (TCVG), S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), and N-acetyl-S-(1,2,2,-trichlorovinyl)-l-cysteine (NAcTCVC) were also significantly lower in kidney and urine of HFD- or MCD-fed mice compared with LFD-fed mice. Despite differences in levels of nephrotoxic PERC metabolites in kidney, LFD- and MCD-fed mice demonstrated similar degree of nephrotoxicity. However, HFD-fed mice were less sensitive to PERC-induced nephrotoxicity. Thus, whereas both MCD- and HFD-induced fatty liver reduced the delivered dose of nephrotoxic PERC metabolites to the kidney, only HFD was protective against PERC-induced nephrotoxicity, possibly due to greater toxicodynamic sensitivity induced by methyl and choline deficiency. These results therefore demonstrate that pre-existing disease conditions can lead to a complex interplay of toxicokinetic and toxicodynamic changes that modulate susceptibility to the toxicity of xenobiotics.


Assuntos
Poluentes Ambientais/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tetracloroetileno/toxicidade , Animais , Poluentes Ambientais/farmacocinética , Glutationa/metabolismo , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Tetracloroetileno/farmacocinética , Toxicocinética
14.
Environ Res ; 167: 136-143, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30014895

RESUMO

BACKGROUND: The synthetic solvent tetrachloroethylene (PCE), commonly used in dry cleaning operations, is a human neurotoxicant and carcinogen. However, its effect on reproduction is poorly understood, as prior studies have been limited to small occupational cohorts. We examined the association between PCE exposure from contamination of the public drinking water supply and time-to-pregnancy (TTP) in a cohort of mothers from Cape Cod, Massachusetts. METHODS: The Cape Cod Family Health Study is a retrospective cohort study designed to examine the reproductive and developmental health effects of exposure to PCE-contaminated drinking water. Our analysis included 1565 women who reported 3826 planned pregnancies from 1949 to 1990. Women completed self-administered questionnaires that ascertained TTP for each of her pregnancies, regardless of the outcome, as well as residential history and demographic information. We utilized EPANET water distribution system modeling software and a leaching and transport model to assess PCE exposure for each pregnancy. We used log-binomial regression models to estimate relative risks (RR) and 95% confidence intervals (CI), adjusting for potential confounders. We performed a probabilistic bias analysis to examine the effect of outcome misclassification on our results. RESULTS: Any cumulative PCE exposure before pregnancy was associated with a 15% reduction in risk of TTP > 12 months (RR = 0.85, 95% CI: 0.70, 1.03). However, women with the highest average monthly PCE exposure around the time of the pregnancy attempt (≥ 2.5 g) had increased risk of TTP > 12 months (RR = 1.36, 95% CI: 1.06, 1.76). CONCLUSIONS: We found little evidence for long-term, cumulative adverse effects of PCE exposure on TTP, but high levels of PCE exposure around the time of the pregnancy attempt were associated with longer TTP. These associations may be underestimated due to the exclusion of unsuccessful pregnancy attempts from our study population, and may be biased by outcome and exposure misclassification given the long-term recall of TTP and use of a leaching and transport model to estimate PCE exposure.


Assuntos
Água Potável , Tetracloroetileno , Tempo para Engravidar , Poluentes Químicos da Água , Adulto , Exposição Ambiental , Feminino , Humanos , Masculino , Massachusetts , Gravidez , Estudos Retrospectivos , Tetracloroetileno/toxicidade , Tempo para Engravidar/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
15.
Environ Health ; 17(1): 58, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970097

RESUMO

BACKGROUND: Residents of Massachusetts and Rhode Island were exposed to tetrachloroethylene (PCE)-contaminated drinking water from 1968 through the early 1990s when the solvent was used to apply a vinyl liner to drinking water mains to address taste and odor problems. Few studies have examined the risk of fetal death among women exposed to solvent-contaminated drinking water. Two previous investigations found moderate increases in the risk of stillbirth among highly exposed women; however, these results were based on a small number of cases. The present case-control study was undertaken to examine further this association with a large number of stillbirths. METHODS: Cases were comprised of stillborn infants delivered between 1968 and 1995 to mothers who resided in 28 Massachusetts and Rhode Island cities and towns with some affected water mains (N = 296). Cases were included if the cause of death was placental abruption and/or placental insufficiency. Controls were randomly selected live-born infants who were delivered in the same time period and geographic area (N = 783). Data on confounding variables were gathered from vital records and questionnaires. PCE exposure was estimated using a leaching and transport model integrated into water system software. RESULTS: Mothers with any PCE exposure had a 1.7-fold increase in the adjusted odds of placenta-related stillbirth (95% CI: 1.2-2.4). The adjusted odds ratio (OR) increased as a woman's exposure level increased: in comparison to unexposed mothers, ORs were 1.5 (95% CI: 1.0-2.3) for low exposure (> 0-median), 1.7 (95% CI: 1.1-2.5) for moderate exposure (>median-90th percentile) and 1.9 (95% CI: 1.1-3.2) for high exposure (>90th percentile) (p value for trend = 0.02). A similar pattern was observed when PCE exposure was dichotomized at 40 µg/L, the suggested action guideline for remediation (OR = 1.5, 95% CI: 1.1-2.2 and OR = 2.6, 95% CI: 1.4-4.8, respectively, for PCE exposure <=40 µg/L and > 40 µg/L) (p value for trend = .003). CONCLUSIONS: We observed a linear dose-dependent increase in the odds of stillbirth due to placental abruption and placental insufficiency with prenatal exposure to PCE contaminated drinking water. Because PCE remains a common drinking water contaminant, these findings highlight the importance of considering pregnant women when monitoring, regulating and remediating drinking water supplies.


Assuntos
Água Potável/análise , Placenta/química , Natimorto/epidemiologia , Tetracloroetileno/toxicidade , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Massachusetts/epidemiologia , Modelos Teóricos , Gravidez , Rhode Island/epidemiologia , Risco , Adulto Jovem
16.
Toxicol Sci ; 164(2): 489-500, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897530

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are structurally similar olefins that can cause liver and kidney toxicity. Adverse effects of these chemicals are associated with metabolism to oxidative and glutathione conjugation moieties. It is thought that CYP2E1 is crucial to the oxidative metabolism of TCE and PCE, and may also play a role in formation of nephrotoxic metabolites; however, inter-species and inter-individual differences in contribution of CYP2E1 to metabolism and toxicity are not well understood. Therefore, the role of CYP2E1 in metabolism and toxic effects of TCE and PCE was investigated using male and female wild-type [129S1/SvlmJ], Cyp2e1(-/-), and humanized Cyp2e1 [hCYP2E1] mice. To fill in existing gaps in our knowledge, we conducted a toxicokinetic study of TCE (600 mg/kg, single dose, i.g.) and a subacute study of PCE (500 mg/kg/day, 5 days, i.g.) in 3 strains. Liver and kidney tissues were subject to profiling of oxidative and glutathione conjugation metabolites of TCE and PCE, as well as toxicity endpoints. The amounts of trichloroacetic acid formed in the liver was hCYP2E1≈ 129S1/SvlmJ > Cyp2e1(-/-) for both TCE and PCE; levels in males were about 2-fold higher than in females. Interestingly, 2- to 3-fold higher levels of conjugation metabolites were observed in TCE-treated Cyp2e1(-/-) mice. PCE induced lipid accumulation only in liver of 129S1/SvlmJ mice. In the kidney, PCE exposure resulted in acute proximal tubule injury in both sexes in all strains (hCYP2E1 ≈ 129S1/SvlmJ > Cyp2e1(-/-)). In conclusion, our results demonstrate that CYP2E1 is an important, but not exclusive actor in the oxidative metabolism and toxicity of TCE and PCE.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Família 2 do Citocromo P450/metabolismo , Tetracloroetileno/metabolismo , Tetracloroetileno/toxicidade , Tricloroetileno/metabolismo , Tricloroetileno/toxicidade , Animais , Citocromo P-450 CYP2E1/deficiência , Citocromo P-450 CYP2E1/genética , Família 2 do Citocromo P450/deficiência , Família 2 do Citocromo P450/genética , Feminino , Glutationa/metabolismo , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Tricloroacético/metabolismo
17.
Toxicol Appl Pharmacol ; 352: 142-152, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857080

RESUMO

BACKGROUND: Perchloroethylene (perc) induced target organ toxicity has been associated with tissue-specific metabolic pathways. Previous physiologically-based pharmacokinetic (PBPK) modeling of perc accurately predicted oxidative metabolites but suggested the need to better characterize glutathione (GSH) conjugation as well as toxicokinetic uncertainty and variability. OBJECTIVES: We updated the previously published "harmonized" perc PBPK model in mice to better characterize GSH conjugation metabolism as well as the uncertainty and variability of perc toxicokinetics. METHODS: The updated PBPK model includes expanded models for perc and its oxidative metabolite trichloroacetic acid (TCA), and physiologically-based sub-models for conjugative metabolites. Previously compiled mouse kinetic data in B6C3F1 and Swiss-Webster mice were augmented to include data from a recent study in male C57BL/6J mice that measured perc and metabolites in serum and multiple tissues. Hierarchical Bayesian population analysis using Markov chain Monte Carlo was conducted to characterize uncertainty and inter-strain variability in perc metabolism. RESULTS: The updated model fit the data as well or better than the previously published "harmonized" PBPK model. Tissue dosimetry for both oxidative and conjugative metabolites was successfully predicted across the three strains of mice, with estimated residuals errors of 2-fold for majority of data. Inter-strain variability across three strains was evident for oxidative metabolism; GSH conjugation data were only available for one strain. CONCLUSIONS: This updated PBPK model fills a critical data gap in quantitative risk assessment by predicting the internal dosimetry of perc and its oxidative and GSH conjugation metabolites and lays the groundwork for future studies to better characterize toxicokinetic variability.


Assuntos
Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Glutationa/metabolismo , Modelos Biológicos , Tetracloroetileno/farmacocinética , Tetracloroetileno/toxicidade , Animais , Teorema de Bayes , Poluentes Ambientais/administração & dosagem , Cadeias de Markov , Desintoxicação Metabólica Fase II , Camundongos Endogâmicos C57BL , Método de Monte Carlo , Oxirredução , Medição de Risco , Especificidade da Espécie , Tetracloroetileno/administração & dosagem , Distribuição Tecidual , Toxicocinética
18.
Toxicol Sci ; 160(1): 95-110, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973375

RESUMO

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are ubiquitous environmental contaminants and occupational health hazards. Recent health assessments of these agents identified several critical data gaps, including lack of comparative analysis of their effects. This study examined liver and kidney effects of TCE and PCE in a dose-response study design. Equimolar doses of TCE (24, 80, 240, and 800 mg/kg) or PCE (30, 100, 300, and 1000 mg/kg) were administered by gavage in aqueous vehicle to male B6C3F1/J mice. Tissues were collected 24 h after exposure. Trichloroacetic acid (TCA), a major oxidative metabolite of both compounds, was measured and RNA sequencing was performed. PCE had a stronger effect on liver and kidney transcriptomes, as well as greater concentrations of TCA. Most dose-responsive pathways were common among chemicals/tissues, with the strongest effect on peroxisomal ß-oxidation. Effects on liver and kidney mitochondria-related pathways were notably unique to PCE. We performed dose-response modeling of the transcriptomic data and compared the resulting points of departure (PODs) to those for apical endpoints derived from long-term studies with these chemicals in rats, mice, and humans, converting to human equivalent doses using tissue-specific dosimetry models. Tissue-specific acute transcriptional effects of TCE and PCE occurred at human equivalent doses comparable to those for apical effects. These data are relevant for human health assessments of TCE and PCE as they provide data for dose-response analysis of the toxicity mechanisms. Additionally, they provide further evidence that transcriptomic data can be useful surrogates for in vivo PODs, especially when toxicokinetic differences are taken into account.


Assuntos
Poluentes Ambientais/toxicidade , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tetracloroetileno/toxicidade , Transcriptoma , Tricloroetileno/toxicidade , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Medição de Risco , Análise de Sequência de RNA
19.
Toxicol Sci ; 159(1): 102-113, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28903486

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent pathological liver condition in developed countries. NAFLD results in severe alterations in liver function, including xenobiotic metabolism. Perchloroethylene (PERC) is a ubiquitous environmental pollutant, a known hepatotoxicant in rodents, and a probable human carcinogen. It is known that PERC disposition and metabolism are affected by NAFLD in mice; here, we examined how NAFLD changes PERC-associated liver effects. Male C57Bl6/J mice were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, or mild and severe forms of NAFLD, respectively. After 8 weeks on diets, mice were orally administered PERC (300 mg/kg/day) or vehicle (5% aqueous Alkamuls-EL620) for 5 days. PERC-induced liver effects were exacerbated in both NAFLD groups. PERC exposure was associated with up-regulation of genes involved in xenobiotic, lipid, and glutathione metabolism, and down-regulation of the complement and coagulation cascades, regardless of the diet. Interestingly, HFD-fed mice, not MCD-fed mice, were generally more sensitive to PERC-induced liver effects. This was indicated by histopathology and transcriptional responses, where induction of genes associated with cell cycle and inflammation were prominent. Liver effects positively correlated with diet-specific differences in liver concentrations of PERC. We conclude that NAFLD alters the toxicodynamics of PERC and that NAFLD is a susceptibility factor that should be considered in future risk management decisions for PERC and other chlorinated solvents.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Suscetibilidade a Doenças , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Tetracloroetileno/toxicidade , Animais , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma
20.
Toxicol Appl Pharmacol ; 333: 76-83, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28818516

RESUMO

Tetrachloroethene (perchloroethylene, PCE), an ubiquitous environmental contaminant, has been implicated in inducing autoimmunity/autoimmune diseases (ADs), including systemic lupus erythematosus (SLE) and scleroderma in humans. However, experimental evidence suggesting the potential of PCE in mediating autoimmunity is lacking. This study was, therefore, undertaken to explore PCE's potential in inducing/exacerbating an autoimmune response. Six-week old female MRL+/+ mice, in groups of 6 each, were treated with PCE (0.5mg/ml) via drinking water for 12, 18 and 24weeks and markers of autoimmunity and oxidative stress were evaluated. PCE exposure led to significant increases in serum anti-nuclear antibodies (ANA), anti-dsDNA and anti-scleroderma-70 (anti-Scl-70) antibodies at 18weeks and, to a greater extent at 24weeks, suggesting that PCE exposure exacerbated autoimmunity in our animal model. The increases in autoantibodies were associated with time-dependent increases in malondialdehyde (MDA)-protein adducts and their antibodies, as well as significantly decreased levels of antioxidants GSH and SOD. The splenocytes isolated from mice treated with PCE for 18 and 24weeks showed greater Th17 cell proliferation and increased release of IL-17 in culture supernatants following stimulation with MDA-mouse serum albumin adducts, suggesting that MDA-modified proteins may act as an immunologic trigger by activating Th17 cells and contribute to PCE-mediated autoimmunity. Our studies thus provide an experimental evidence that PCE induces/exacerbates an autoimmune response and lipid-derived aldehydes (such as MDA) contribute to this response.


Assuntos
Autoimunidade/efeitos dos fármacos , Malondialdeído/metabolismo , Solventes/toxicidade , Tetracloroetileno/toxicidade , Animais , Anticorpos/sangue , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Glutationa/sangue , Interleucina-17/metabolismo , Lipídeos , Lúpus Eritematoso Sistêmico , Camundongos , Ligação Proteica , Escleroderma Sistêmico , Baço/citologia , Superóxido Dismutase/sangue , Células Th17/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...